《大数据:互联网大规模数据挖掘与分布式处理(第2版)》 [美] 莱斯科夫 _扫描版_pdf电子书下载

《大数据:互联网大规模数据挖掘与分布式处理(第2版)》 [美] 莱斯科夫 _扫描版_pdf电子书下载

内容介绍:

本书由斯坦福大学“Web挖掘”课程的内容总结而成,主要关注极大规模数据的挖掘。主要内容包括分布式文件系统、相似性搜索、搜索引擎技术、频繁项集挖掘、聚类算法、广告管理及推荐系统。其中相关章节有对应的习题,以巩固所讲解的内容。读者更可以从网上获取相关拓展材料。

目录介绍:

第1 章 数据挖掘基本概念 1
1.1 数据挖掘的定义 1
1.1.1 统计建模 1
1.1.2 机器学习 1
1.1.3 建模的计算方法 2
1.1.4 数据汇总 2
1.1.5 特征抽取 3
1.2 数据挖掘的统计限制 4
1.2.1 整体情报预警 4
1.2.2 邦弗朗尼原理 4
1.2.3 邦弗朗尼原理的一个例子 5
1.2.4 习题 6
1.3 相关知识 6
1.3.1 词语在文档中的重要性 6
1.3.2 哈希函数 7
1.3.3 索引 8
1.3.4 二级存储器 9
1.3.5 自然对数的底e 10
1.3.6 幂定律 11
1.3.7 习题 12
1.4 本书概要 13
1.5 小结 14
1.6 参考文献 15
第2 章 MapReduce及新软件栈 16
2.1 分布式文件系统 17
2.1.1 计算节点的物理结构 17
2.1.2 大规模文件系统的结构 18
2.2 MapReduce 19
2.2.1 Map 任务 20
2.2.2 按键分组 20
2.2.3 Reduce 任务 21
2.2.4 组合器 21
2.2.5 MapReduce 的执行细节 22
2.2.6 节点失效的处理 23
2.2.7 习题 23
2.3 使用MapReduce 的算法 23
2.3.1 基于MapReduce 的矩阵—向量
乘法实现 24
2.3.2 向量v 法放入内存时的处理 24
2.3.3 关系代数运算 25
2.3.4 基于MapReduce 的选择运算 27
2.3.5 基于MapReduce 的投影运算 27
2.3.6 基于MapReduce 的并、交和差运算 28
2.3.7 基于MapReduce 的自然连接运算 28
2.3.8 基于MapReduce 的分组和聚合运算 29
2.3.9 矩阵乘法 29
2.3.10 基于单步MapReduce 的矩阵乘法 30
2.3.11 习题 31
2.4 MapReduce 的扩展 31
2.4.1 工作流系统 32
2.4.2 MapReduce 的递归扩展版本 33
…… 为了方便大家利用电子书更好的学习,精心整理了网络上的各种电子书,有PDF版本的,也有TXT版本的,现有一万多本PDF的,七万多本TXT的,还有精心整理的天涯神贴,而且还在不断增加中,有需要的可以点击下面的衔接或者扫码下载:

链接: https://pan.baidu.com/s/1z45OMvYM0Jy-BVuJJmRvtw?pwd=w3m9 提取码: w3m9 复制这段内容后打开百度网盘手机App,操作更方便哦

0

评论0

请先

没有账号? 注册  忘记密码?