作者介绍:
Andrea Isoni博士是一位数据科学家和物理学家,在软件开发方面拥有丰富的经验,并且对机器学习算法和技术拥有广泛的知识。此外,他还具有多种语言的经验,例如Python,CC,Java,JavaScript,C#,SQL和HTML。他还使用了Hadoop框架。译者简介杜春晓,英语语言文学学士,软件工程硕士。其他翻译包括“ Python数据挖掘入门和实践”,“ Python数据分析实践”和“电子人才-我的第一个Raspberry Pi入门”。新浪微博:@宜_生。
内容介绍:
机器学习可用于处理用户生成的越来越多的Web数据。本书解释了如何使用Python语言,Django框架开发Web业务应用程序,以及如何使用一些现成的库和工具(sklearn,scipy,nltk,Django等)来处理和分析数据。由应用程序生成或使用。本书不仅涵盖机器学习的核心概念,还涵盖如何将数据部署到使用Django框架开发的Web应用程序,包括Web,文档和服务器端数据挖掘以及推荐引擎构建方法。本书适合于有兴趣成为或刚刚成为数据科学家的读者,也适合对机器学习和Web数据挖掘等技术实践感兴趣的读者。
目录介绍:
第1章 Python机器学习实践入门 1
1.1 机器学习常用概念 1
1.2 数据的准备、处理和可视化
—NumPy、pandas和matplotlib教程 6
1.2.1 NumPy的用法 6
1.2.2 理解pandas模块 23
1.2.3 matplotlib教程 32
1.3 本书使用的科学计算库 35
1.4 机器学习的应用场景 36
1.5 小结 36
第2章 无监督机器学习 37
2.1 聚类算法 37
2.1.1 分布方法 38
2.1.2 质心点方法 40
2.1.3 密度方法 41
2.1.4 层次方法 44
2.2 降维 52
2.3 奇异值分解(SVD) 57
2.4 小结 58
第3章 有监督机器学习 59
3.1 模型错误评估 59
3.2 广义线性模型 60
3.2.1 广义线性模型的概率
解释 63
3.2.2 k近邻 63
3.3 朴素贝叶斯 64
3.3.1 多项式朴素贝叶斯 65
3.3.2 高斯朴素贝叶斯 66
3.4 决策树 67
3.5 支持向量机 70
3.6 有监督学习方法的对比 75
3.6.1 回归问题 75
3.6.2 分类问题 80
3.7 隐马尔可夫模型 84
3.8 小结 93
第4章 Web挖掘技术 94
4.1 Web结构挖掘 95
4.1.1 Web爬虫 95
4.1.2 索引器 95
4.1.3 排序—PageRank
算法 96
4.2 Web内容挖掘 97
句法解析 97
4.3 自然语言处理 98
4.4 信息的后处理 108
4.4.1 潜在狄利克雷分配 108
4.4.2 观点挖掘(情感
分析) 113
4.5 小结 117
第5章 推荐系统 118
5.1 效用矩阵 118
5.2 相似度度量方法 120
5.3 协同过滤方法 120
5.3.1 基于记忆的协同
过滤 121
5.3.2 基于模型的协同
过滤 126
5.4 CBF方法 130
5.4.1 商品特征平均得分
方法 131
5.4.2 正则化线性回归
方法 132
5.5 用关联规则学习,构建推荐
系统 133
5.6 对数似然比推荐方法 135
5.7 混合推荐系统 137
5.8 推荐系统评估 139
5.8.1 均方根误差(RMSE)
评估 140
5.8.2 分类效果的度量方法 143
5.9 小结 144
第6章 开始Django之旅 145
6.1 HTTP—GET和POST方法的
基础 145
6.1.1 Django的安装和
服务器的搭建 146
6.1.2 配置 147
6.2 编写应用—Django
最重要的功能 150
6.2.1 model 150
6.2.2 HTML网页背后的
URL和view 151
6.2.3 URL声明和view 154
6.3 管理后台 157
6.3.1 shell接口 158
6.3.2 命令 159
6.3.3 RESTful应用编程
接口(API) 160
6.4 小结 162
第7章 电影推荐系统Web应用 163
7.1 让应用跑起来 163
7.2 model 165
7.3 命令 166
7.4 实现用户的注册、登录和
登出功能 172
7.5 信息检索系统(电影查询) 175
7.6 打分系统 178
7.7 推荐系统 180
7.8 管理界面和API 182
7.9 小结 184
第8章 影评情感分析应用 185
8.1 影评情感分析应用用法
简介 185
8.2 搜索引擎的选取和应用的
代码 187
8.3 Scrapy的配置和情感分析
应用代码 189
8.3.1 Scrapy的设置 190
8.3.2 Scraper 190
8.3.3 Pipeline 193
8.3.4 爬虫 194
8.4 Django model 196
8.5 整合Django和Scrapy 197
8.5.1 命令(情感分析模型和
删除查询结果) 198
8.5.2 情感分析模型加载器 198
8.5.3 删除已执行过的查询 201
8.5.4 影评情感分析器—
Django view和HTML
代码 202
8.6 PageRank:Django view和
算法实现 206
8.7 管理后台和API 210
8.8 小结 212 为了方便大家利用电子书更好的学习,精心整理了网络上的各种电子书,有PDF版本的,也有TXT版本的,现有一万多本PDF的,七万多本TXT的,还有精心整理的天涯神贴,而且还在不断增加中,有需要的可以点击下面的衔接或者扫码下载:
链接: https://pan.baidu.com/s/1z45OMvYM0Jy-BVuJJmRvtw?pwd=w3m9 提取码: w3m9 复制这段内容后打开百度网盘手机App,操作更方便哦
请先
!