作者介绍:
吴安成
致力于在文本和图像领域应用深度学习。曾中兴和亚信联创正在担任研发经理和技术经理。他们目前是Lingge Technology的首席算法科学家。
内容介绍:
本书将软件工程师的转型故事作为算法思维建立和实践的线索。第一章主要阐述了如何从传统的工程思维转向算法思维。第2-5章介绍了强化学习方向的文本处理,视觉识别,Bot机器人和算法实践。第6章说明了预测和推荐的应用。
目录介绍:
1 开始 1
1.1 从传统的软件工程思维转型 1
1.2 建立算法思维 2
1.2.1 算法的开发流程 3
1.2.2 做算法的步骤 4
1.2.3 英特的总结 8
1.3 观察!观察!观察!重要的事情说三遍 11
2 文本分析实战 15
2.1 第一个文本问题 15
2.1.1 邮件标题的预处理 15
2.1.2 选用算法 18
2.1.3 用CNN 做文本分类 21
2.2 情感分类 24
2.2.1 先分析需求 24
2.2.2 词法分析 25
2.2.3 机器学习 28
2.2.4 试试LSTM 模型 30
2.3 文本深度特征提取 31
2.3.1 词特征表示 31
2.3.2 句子特征表示 42
目录
VII ?
2.3.3 深度语义模型 51
3 做一个对话机器人 53
3.1 理解人类提问 56
3.2 答案的抽取和选择 57
3.3 蕴含关系 62
3.4 生成式对话模型(Generative Model ) 63
3.5 判断机器人说话的准确性 69
3.6 智能对话的总结和思考 70
4 视觉识别 73
4.1 从人脸识别开始 74
4.1.1 OpenCV 能做什么 74
4.1.2 检测精度的进化:Dlib 79
4.1.3 表情识别:Openface 83
4.2 深度卷积网络 87
4.2.1 CNN 的演化过程 87
4.2.2 深度卷积和更深的卷积 96
4.2.3 实现更深的卷积网络 103
4.2.4 残差网络的实现 108
4.2.5 十全大补药:通用的提高精度的方法 111
4.2.6 图像训练需要注意的地方 116
4.3 目标检测 125
4.3.1 用SSD 来实现目标检测应用 133
4.3.2 SSD 训练源码提示 136
4.4 视觉领域的应用 138
4.4.1 艺术风格画 138
4.4.2 看图说话:用文字描述一幅图像(BiRNN CNN) 140
4.4.3 CNN 的有趣应用:语音识别 142
5 强化学习实践 144
5.1 吃豆子和强化学习 144
5.2 马尔科夫决策过程 146
5.3 理解Q 网络 149
深度学习算法实践
? VIII
5.4 模拟物理世界:OpenAI 151
5.5 实现一个DQN 153
5.5.1 DQN 代码实现 153
5.5.2 DQN 过程的图表化 159
5.6 关于强化学习的思考 162
5.6.1 强化学习的特殊性 162
5.6.2 知识的形成要素:记忆 164
5.6.3 终极理想:终身学习 169
6 预测与推荐 172
6.1 从Google 的感冒预测说起 172
6.2 股票预测(一) 174
6.2.1 股票业务整理 175
6.2.2 数据获取和准备 178
6.2.3 模型搭建 182
6.2.4 优化 185
6.2.5 后续 186
6.3 股票预测(二) 188
6.4 深度学习在推荐领域的应用:Lookalike 算法 196
6.4.1 调研 197
6.4.2 实现 200
6.4.3 结果 204
6.4.4 总结探讨 204
参考文献 206 为了方便大家利用电子书更好的学习,精心整理了网络上的各种电子书,有PDF版本的,也有TXT版本的,现有一万多本PDF的,七万多本TXT的,还有精心整理的天涯神贴,而且还在不断增加中,有需要的可以点击下面的衔接或者扫码下载:
链接: https://pan.baidu.com/s/1z45OMvYM0Jy-BVuJJmRvtw?pwd=w3m9 提取码: w3m9 复制这段内容后打开百度网盘手机App,操作更方便哦
请先
!